KONSEP DASAR PENGUJIAN HIPOTESIS

Kamis, 20 November 2014

A. Pengertian Hipotesis
Uji Hipotesis adalah metode pengambilan keputusan yang didasarkan dari analisa data, baik dari percobaan yang terkontrol, maupun dari observasi (tidak terkontrol). Dalam statistik sebuah hasil bisa dikatakan signifikan secara statistik jika kejadian tersebut hampir tidak mungkin disebabkan oleh factor yang kebetulan, sesuai dengan batas probabilitas yang sudah ditentukan sebelumnya.
Uji hipotesis kadang disebut juga “konfirmasi analisa data”. Keputusan dari uji hipotesis hampir selalu dibuat berdasarkan pengujian hipotesis nol. Ini adalah pengujian untuk menjawab pertanyaan yang mengasumsikan hipotesis nol adalah benar.
Daerah kritis (en= Critical Region) dari uji hipotesis adalah serangkaian hasil yang bisa menolak hipotesis nol, untuk menerima hipotesis alternatif. Daerah kritisini biasanya di simbolkan dengan huruf C.
Dalam pengujian hipotesis kita harus mementukan tolok ukur penerimaan dan penolakan yang didasarkan pada peluang penerimaan dan penolakan H0 itu sendiri.
Interpretasi
Jika nilai p lebih kecil dari tingkat signifikan test yang diharapkan, maka hipotesis nol bisa di tolak. Jika nilai p tidak lebih kecil dari tingkat signifikan test yang diharapkan bisa disimpulkan bahwa tidak cukup bukti untuk menolak hipotesa nol, dan bisa disimpulkan bahwa hipotesa alternatiflah yang benar.
Karena ketidaktahuan apakah H0 atau H1 yang benar maka kita harus mencoba untuk mebuat keseimbangan dari keduanya. Umumnya kita mengandalkan bahwa H0 benar sehingga kita diharapkan pada kesalahan I saja (α) karena kesalahan II digunakan untuk menentukan kekuatan uji yang ditentukan.
Selang kepercayaan (1-α) sebuah parameter dalam praduga selang berkaitan erat dengan pengujian hipotesis jika H1 ditolak dengan taraf yang nyata maka selang kepercayaan (1-α) tidak mengandung parameter spesifik yang ditetapkan dalam H0.
Definisi berikut diambil dari buku karangan Lehmann dan Romano:
  • Hipotesis statistik adalah Sebuah pernyataan tentang parameter yang menjelaskan sebuah populasi (bukan sampel).
  • Statistik adalah Angka yang dihitung dari sekumpulan sampel.
  • Hipotesis nol (H0) adalah Sebuah hipotesis yang berlawanan dengan teori yang akan dibuktikan.
  • Hipotesis alternatif (H1) adalah Sebuah hipotesis (kadang gabungan) yang berhubungan dengan teori yang akan dibuktikan.
  • Tes Statistik adalah Sebuah prosedur dimana masukannya adalah sampel dan hasilnya adalah hipotesis.
  • Daerah penerimaan adalah Nilai dari tes statistik yang menggagalkan untuk penolakan hipotesis nol.
  • Daerah penolakan adalah Nilai dari tes statistik untuk penolakan hipotesis nol.
  • Kekuatan Statistik (1 − β) adalah Probabilitas kebenaran pada saat menolak hipotesis nol.
  • Tingkat signifikan test (α) adalah Probabilitas kesalahan pada saat menolak hipotesis nol.
B. Kegunaan Hipotesis
Ada beberapa Kegunaan yang terdapat dari hipotesis antara lain:

  • Hipotesis memberikan penjelasan sementara tentang gejala-gejala.
  • Hipotesis sebagai pengetahuan dalam suatu bidang.
  • Hipotesis memberikan suatu pernyataan hubungan yang langsung dapat diuji dalam penelitian.
  • Hipotesis memberikan arah kepada penelitian.
  • Hipotesis memberikan kerangka untuk melaporkan kesimpulan penyelidikan
C. Jenis-Jenis Hipotesis


Pengujian hipotesis dapat di bedakan atas beberapa jenis berdasarkan criteria yang menyertainya.

1.  Berdasarkan Jenis Parameternya
Didasarkan atas jenis parameter yang di gunakan, pengujian hipotesis dapat di bedakan atas tiga jenis, yaitu sebagai berikut .

a.  Pengujian hipotesis tentang rata-rata
Pengujian hipotesis tentang rata-rata adalah pengujian hipotesis mengenai rata-rata populasi yang di dasarkan atas informasi sampelnya.
Contohnya:
1. Pengujian hipotesis satu rata-rata
2.Pengujian hipotesis beda dua rata-rata
3.Pengujian hipotesis beda tiga rata-rata

b. Pengujian hipotesis tentang proporsi
Pengujian hipotesis tentang proporsi adalah pengujian hipotesis mengenai proporsi populasi yang di dasarkan atas informasi sampelnya.
Contohnya:
1. Pengujian hipotesis satu proporsi
2.Pengujian hipotesis beda dua proporsi
3.Pengujian hipotesis beda tiga proporsi

c. Pengujian hipotesis tentang varians
Pengujian hipotesis tentang varians adalah pengujian hipotesis mengenai rata-rata populasi yang di dasarkan atas informasi sampelnya.
Contohnya:
1.   Pengujian hipotesis tentang satu varians
2.   Pengujian hipotesis tentang kesamaan dua varians


2. Berdasarkan Jumlah Sampelnya
Didasarkan atas ukuran sampelnya, pengujian hipotesis dapat di bedakan atas dua jenis, yaitu sebagai berikut.
a. Pengujian hipotesis sampel besar
Pengujian hipotesis sampel besar adalah pengujian hipotesis yang menggunakan sampel lebih besar dari 30 (n > 30).
b. Pengujian hipotesis sampel kecil
Pengujian hipotesis sampel kecil adalah pengujian hipotesis yang menggunakan sampel lebih kecil atau sama dengan 30 (n ≤ 30).

3. Berdasarkan Jenis Distribusinya
Didasarkan atas jenis distribusi yang digunakan, pengujian hipotesis dapat di bedakan atas empat jenis, yaitu sebagai berikut.
a. Pengujian hipotesis dengan distribusi  Z
Pengujian hipotesis dengan distribusi  Z adalah pengujian hipotesis yang menggunakan distribusi Z sebagai uji statistik. Tabel pengujiannya disebut tabel normal standard. Hasil uji statistik ini kemudian di bandingkan dengan nilai dalam tabel untuk menerima atau menolak hipotesis nol (Ho) yang di kemukakan.
Contohnya :
1. Pengujian hipotesis satu dan beda dua rata-rata sampel besar
2. Pengujian satu dan beda dua proporsi

b. Pengujian hipotesis dengan distribusi t (t-student)
Pengujian hipotesis  dengan distribusi t adalah pengujian hipotesis yang menggunakan distribusi t sebagai uji statistik. Tabel pengujiannya disebut tabel t-student. Hasil uji statistik ini kemudian di bandingkan dengan nilai dalam tabel untuk menerima atau menolak hipotesis nol (Ho) yang di kemukakan.
Contohnya :
1. Pengujian hipotesis satu rata-rata sampel kecil
2. Pengujian hipotesis beda dua rata-rata sampel kecil


c. Pengujian hipotesis dengan distribusi  χ2 ( kai kuadrat)
Pengujian hipotesis  dengan distribusi χ2 ( kai kuadrat) adalah pengujian hipotesis yang menggunakan distribusi χ2 sebagai uji statistik. Tabel pengujiannya disebut tabel χ2. Hasil uji statistik ini kemudian di bandingkan dengan nilai dalam tabel untuk menerima atau menolak hipotesis nol (Ho) yang di kemukakan.
Contohnya :
1. Pengujian hipotesis beda tiga proporsi
2. Pengujian Independensi
3. Pengujian hipotesis kompatibilitas

d. Pengujian hipotesis dengan distribusi F (F-ratio)
Pengujian hipotesis  dengan distribusi F (F-ratio) adalah pengujian hipotesis yang menggunakan distribusi F (F-ratio) sebagai uji statistik. Tabel pengujiannya disebut tabel F. Hasil uji statistik ini kemudian di bandingkan dengan nilai dalam tabel untuk menerima atau menolak hipotesis nol (Ho) yang di kemukakan.
Contohnya :
1.  Pengujian hipotesis beda tiga rata-rata
2. Pengujian hipotesis kesamaan dua varians

4. Berdasarkan Arah atau Bentuk Formulasi Hipotesisnya
Didasarkan atas arah atau bentuk formulasi hipotesisnya, pengujian hipotesis di bedakan atas 3 jenis, yaitu sebagai berikut.
a. Pengujian hipotesis dua pihak (two tail test)
Pengujian hipotesis dua pihak adalah pengujian hipotesis di mana hipotesis nol (Ho) berbunyi “sama dengan” dan hipotesis alternatifnya (H1) berbunyi “tidak sama dengan” (Ho = dan H1 ≠)
b. Pengujian hipotesis pihak kiri atau sisi kiri
Pengujian hipotesis pihak kiri adalah pengujian hipotesis di mana hipotesis nol (Ho) berbunyi “sama dengan” atau “lebih besar atau sama dengan” dan hipotesis alternatifnya (H1) berbunyi “lebih kecil” atau “lebih kecil atau sama dengan” (Ho = atau Ho ≥ dan H1 < atau H1 ≤ ). Kalimat “lebih kecil atau sama dengan” sinonim dengan kata “paling sedikit atau paling kecil”.
c. Pengujian hipotesis pihak kanan atau sisi kanan
Pengujian hipotesis pihak kanan adalah pengujian hipotesis di mana hipotesis nol (Ho) berbunyi “sama dengan” atau “lebih kecil atau sama dengan” dan hipotesis alternatifnya (H1) berbunyi “lebih besar” atau “lebih besar atau sama dengan” (Ho = atau Ho ≤ dan H1 > atau H1 ≥). Kalimat “lebih besar  atau sama dengan” sinonim dengan kata “paling banyak atau paling besar”. 
D. Prosedur PenyajianHipotesis



Prosedur pengujian hipotesis statistic adalah langkah-langkah yang di pergunakan dalam menyelesaikan pengujian hipotesis tersebut. Berikut ini langkah-langkah pengujian hipotesis statistic adalah sebagai berikut.

1.      Menentukan  Formulasi Hipotesis
Formulasi atau perumusan hipotesis statistic dapat di bedakan atas dua jenis, yaitu sebagai berikut;
a.       Hipotesis nol / nihil (HO)
Hipotesis nol adalah hipotesis yang dirumuskan sebagai suatu pernyataan yang akan di uji. Hipotesis nol tidak memiliki perbedaan atau perbedaannya nol dengan hipotesis sebenarnya.
b.      Hipotesis alternatif/ tandingan (H1 / Ha)
Hipotesis alternatif adalah hipotesis yang di rumuskan sebagai lawan atau tandingan dari hipotesis nol. Dalam menyusun hipotesis alternatif, timbul 3 keadaan berikut.
1)      H1 menyatakan bahwa harga parameter lebih besar dari pada harga yang di hipotesiskan. Pengujian itu disebut pengujian satu sisi atau satu arah, yaitu pengujian sisi atau arah kanan.
2)      H1 menyatakan bahwa harga parameter lebih kecil dari pada harga yang di hipotesiskan. Pengujian itu disebut pengujian satu sisi atau satu arah, yaitu pengujian sisi atau arah kiri.
3)      H1 menyatakan bahwa harga parameter tidak sama dengan harga yang di hipotesiskan. Pengujian itu disebut pengujian dua sisi atau dua arah, yaitu pengujian sisi atau arah kanan dan kiri sekaligus.
 .

2.      Menentukan Taraf Nyata (α)
Taraf nyata adalah besarnya batas toleransi dalam menerima kesalahan hasil hipotesis terhadap nilai parameter populasinya. Semakin tinggi taraf nyata yang di gunakan, semakin tinggi pula penolakan hipotesis nol atau hipotesis yang di uji, padahal hipotesis nol benar.
Besaran yang sering di gunakan untuk menentukan taraf nyata dinyatakan dalam %, yaitu: 1% (0,01), 5% (0,05), 10% (0,1), sehingga secara umum taraf nyata di tuliskan sebagai α0,01, α0,05, α0,1. Besarnya nilai α bergantung pada keberanian pembuat keputusan yang dalam hal ini berapa besarnya kesalahan (yang menyebabkan resiko) yang akan di tolerir. Besarnya kesalahan tersebut di sebut sebagai daerah kritis pengujian (critical region of a test) atau daerah penolakan ( region of rejection).
Nilai α yang dipakai sebagai taraf nyata di gunakan untuk menentukan nilai distribusi yang di gunakan pada pengujian, misalnya distribusi normal (Z), distribusi t, dan distribusi X². Nilai itu sudah di sediakan dalam bentuk tabel di sebut nilai kritis.

3.      Menentukan Kriteria Pengujian
Kriteria Pengujian adalah bentuk pembuatan keputusan dalam menerima atau menolak hipotesis nol (Ho) dengan cara membandingkan nilai α tabel distribusinya (nilai kritis) dengan nilai uji statistiknya, sesuai dengan bentuk pengujiannya. Yang di maksud dengan bentuk pengujian adalah sisi atau arah pengujian.
a.       Penerimaan Ho terjadi jika nilai uji statistiknya lebih kecil atau lebih besar daripada nilai positif atau negatif dari α tabel. Atau nilai uji statistik berada di luar nilai kritis.
b.      Penolakan Ho terjadi jika nilai uji statistiknya lebih besar atau lebih kecil daripada nilai positif atau negatif dari α tabel. Atau nilai uji statistik berada di luar nilai kritis.

4. Menentukan Nilai Uji Statistik
Uji statistik merupakan rumus-rumus yang berhubungan dengan distribusi tertentu dalam pengujian hipotesis. Uji statistik merupakan perhitungan untuk menduga parameter data sampel yang di ambil secara random dari sebuah populasi. Misalkan, akan di uji parameter populasi (P), maka yang pertama-tam di hitung adalah statistik sampel (S).

5. Membuat Kesimpulan
                             Pembuatan kesimpulan merupakan penetapan keputusan dalam hal penerimaan atau penolakan hipotesis nol (Ho) yang sesuai dengan kriteria pengujiaanya. Pembuatan kesimpulan dilakukan setelah membandingkan nilai uji statistik dengan nilai α tabel atau nilai kritis.
a.       Penerimaan Ho terjadi jika nilai uji statistik berada di luar nilai kritisnya.
b.      Penolakan Ho terjadi jika nilai uji statistik berada di dalam nilai kritisnya. 













0 komentar:

Posting Komentar

 
Penerapan Statistik Penelitian Bagi Mahasiswa © 2014 | Designed by Nanda Fega Gasela